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Objective: Trade-offs between productivity, physical
workload (PWL), and mental workload (MWL) were studied
when integrating collaborative robots (cobots) into existing
manual work by optimizing the allocation of tasks.

Background: As cobots become more widely introduced in
the workplace and their capabilities greatly improved, there is
a need to consider how they can best help their human partners.

Methods:A theoretical data-driven analysis was conducted
using the O�NET Content Model to evaluate 16 selected jobs
for associated work context, skills, and constraints. Associated
work activities were ranked by potential for substitution by
a cobot. PWL and MWL were estimated using variables from
the O�Net database that represent variables for the Strain
Index and NASA-TLX. An algorithmwas developed to optimize
work activity assignment to cobots and human workers ac-
cording to their most suited abilities.

Results: Human workload for some jobs decreased while
workload for some jobs increased after cobots were reassigned
tasks, and residual human capacity was used to perform job ac-
tivities designated the most important to increase productivity. The
human workload for other jobs remained unchanged.

Conclusions: The changes in human workload from the
introduction of cobots may not always be beneficial for the
human worker unless trade-offs are considered.

Application: The framework of this study may be applied
to existing jobs to identify the relationship between pro-
ductivity and worker tolerances that integrate cobots into
specific tasks.

Keywords: collaborative robot, O�Net database, pro-
ductivity, physical workload, mental workload

INTRODUCTION

Robots have demonstrated tremendous utility
as both independent and collaborative physical
assistants in activities ranging from making de-
liveries in hospitals (Mutlu & Forlizzi, 2008;
Niechwiadowicz & Khan, 2008) to working as
assembly-line workers in factories (Akella et al.,
1999; Jarrasse et al., 2014; Sauppé & Mutlu,
2015). Recent research into human-robot team-
ing, however, reveals a tremendously powerful
yet unexplored potential for robots to not only
serve as substitutes for people in repetitive,
hazardous, or demanding tasks but to augment
and complement human cognitive and physical
capabilities, thereby enabling people to engage in
work activities that were previously unsafe, un-
healthy, mentally challenging, or unfeasible
(Michalos et al., 2015; Pearce et al., 2018). A
deeper understanding of how robots can aug-
ment, as opposed to artificially replicate, human
cognitive and physical work capabilities, can
open new frontiers, for example, performing
manual handling tasks while avoiding muscu-
loskeletal injuries (Barondess, et al., 2001), en-
abling multitasking in cognitively demanding
jobs, or expanding employment opportunities for
individuals with disabilities or age-related de-
cline, thus reshaping human work across various
populations.

Research on the allocation of manufacturing
tasks to human and robot operators has mainly
considered collision avoidance, while more re-
cent work has considered cognitive and physical
ergonomics (Michalos et al., 2014, 2015). Farber
et al. (Faber et al., 2016) described an approach
for considering ergonomics and human move-
ment capability to ascertain the optimal assembly
sequences for human-robot collaboration. This

Address correspondence to Robert G. Radwin, Department
of Industrial and Systems Engineering, University of
Wisconsin–Madison 1550 Engineering Drive, Madison, WI
53706, USA; e-mail: rradwin@wisc.edu.

HUMAN FACTORS
Vol. 0, No. 0, nn n, pp. 1-22
DOI:10.1177/00187208221077722
Article reuse guidelines: sagepub.com/journals-permissions
Copyright © 2022, Human Factors and Ergonomics Society.

https://orcid.org/0000-0002-9456-1495
https://orcid.org/0000-0002-7973-0641
mailto:rradwin@wisc.edu
https://doi.org/10.1177/00187208221077722
https://us.sagepub.com/en-us/journals-permissions
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00187208221077722&domain=pdf&date_stamp=2022-03-28


approach was not applied to actual tasks as not all
influencing factors they identified could be
quantified. Task allocation between collaborating
human and robot teams has been considered based
on a linear resource utilization model of workload
(Tsarouchi et al., 2016). The concept of employing
intelligent assist devices for reducing physical
stress in manufacturing operations was introduced
by Kruger et al. (Krüger et al., 2006). Robotic task
sharing for the purpose of relieving the human
operator from excessive physical demands of
work, as well as for reducing human errors, was
previously considered from an ergonomics per-
spective by Ogorodnikova (Ogorodnikova, 2008).

Previous work by Pearce et al. (2018) included
a computational method to jointly consider per-
formance and ergonomic characteristics, partic-
ularly makespan (i.e., production time) and
physical strain, in human-robot teaming. This
work addressed the limitations of prior work that
solely focused on the production time to allocate
work to multi-robot teams (Koes et al., 2005) or
human-robot teams (Ponda et al., 2010) or that
aimed to minimize the ergonomic impact on
human workers through the introduction of
a collaborative robot (Faber et al., 2016). This
method included a process for modeling work
elements, task constraints, production time,
physical strain, and worker skills and a bi-
objective optimization formulation using
a mixed-integer linear program (MILP). The bi-
objective formulation offered the ability to ex-
plore different weights for each objective and find
task-allocation solutions that are Pareto optimal
(Censor, 1977). Pearce et al. (2018) found that
there were trade-offs in assigning different pri-
orities to time and ergonomics, including com-
pletion time, total strain, and worker idle time. A
simplified bi-objective approach by Schoen et al.
(2020) assisted engineers in constructing human-
robot collaborative task plans. While the interface
and approach showed clear benefits for in-
tegrating optimization in the task planning pro-
cess, the formulation of human and robot cost
measures were left mostly to the discretion of the
engineer, who may or may not have expertise in
ergonomics.

Work activities are suitable for automation at
varying levels. Activities that rely on in-
terpersonal relationships, interactions with work

teams, supervision, resolving conflicts, inter-
acting with customers, or creativity may be more
suitable for human workers. Alternatively, ac-
tivities that offer challenging environmental
conditions, hazardous job exposures, awkward
body positioning, unchallenging repetitious
work, or stressful time pressures may be more
suitable for automation. Robots similarly have
task performance and work-context constraints,
including movement speed, dexterous manipu-
lation, or reach limitations; inability to use
certain tools or machinery designed for human
use; and lacking appropriate end-effectors to
perform work elements, such as applying the
tape, tying knots, or placing packaging materials
in tight spaces.

This study explores potential trade-offs be-
tween different jobs that are currently performed
exclusively by human workers where a collab-
orative robotic assistant can potentially help
reduce physical or mental workload (MWL)
through the allocation of one or more tasks. To
explore a wide variety of jobs, data were utilized
from the Occupational Information Network
(O�NET) system, developed by the U.S. De-
partment of Labor and provides information on
1110 occupations within the U.S. economy
(O�NET, 2020). A systematic review by
Cifuentes et al. (2010) identified 28 studies that
used O�NET to estimate work exposures in
relation to health or safety outcomes. Evanoff
et al. (2014) concluded that job exposure ma-
trices based on O�Net can be used as a measure
of workplace physical exposures for some
studies of musculoskeletal disorders.

One purpose of the O�NET system is to
describe the critical tasks for each occupation in
the database.We utilized the O�NET database to
conduct a data-driven investigation into possible
human-robot task allocations for existing man-
ual jobs based on optimizing productivity and
human physical and mental tolerances. We de-
fine tolerance as the maximum workload to
avoid harm while performing work activities.
This includes physical and mental strain, dis-
comfort, or injuries. We first formulated
a translation from O�NET parameters to rep-
resent measures of human workload. Then, we
quantified the match between parameters to
capabilities of each agent (human and robot).
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These were combined in a multi-objective op-
timization that allocates subtasks to individual
agents. We report on the quantitative and
qualitative results of this analysis and offer
commentary on how this approach can be used
in the construction of human-robot collaborative
programs.

METHODS

We first defined jobs and work activities in
the context of the O�NET database. The
methods used in the calculation of PWL and
MWL are introduced and compared against
parameters obtained from O�NET online and
evaluated. Based on the O�NETContent Model,
activities for selected jobs were evaluated for
work context, skills, and constraints and ranked
by suitability for automating or relying on hu-
man workers. We extracted the associated work
activities, detailed work activities, and work
context for every job identified. Each work
context was similarly scored based on its po-
tential for physical and environmental strain,
discomfort, or injuries. Using these scores, the
PWL and MWL for each job were calculated.
Work activities were ranked based on their
human-robot collaboration potential, and toler-
ances were evaluated in terms of given weights
to PWL and MWL. According to cobot ability
and the optimization algorithm, we determined
which work activities were to be completed by
the cobot. Critically, residual human capacity
gained by allocating a task away from the human
to the cobot was then reallocated to perform the
activities of the job rated most important in
O�Net. This assumed that the most important
work activities were most critical to improving
productivity. After work activities were allo-
cated, the PWL andMWLwere recalculated and
compared with the pre-optimization PWL and
MWL to determine if there is an improvement
after optimization. The process is summarized in
Figure 1.

Human Work Qualification

Representative hand intensive jobs currently
performed by human workers selected from
different industries in the O�NET database were

evaluated for PWL and MWL. A job consists of
one or more work activities performed during
a workday, possibly in repeating cycles (Radwin
et al., 1994). The O�NETwork context database
categorizes the physical and cognitive factors
that influence how people do their work and the
constraints under which a task can be performed.
These factors include aspects of ergonomics
such as environmental conditions (e.g., noise,
thermal, and vibration), job hazards (e.g., radi-
ation, falls, and diseases), and body positioning
(e.g., sitting, standing, bending, twisting, re-
petitive motions). It also offers occupational data
and including information on skills, abilities,
knowledge, work activities, and interests asso-
ciated with these occupations (Peterson et al.,
2001). A key aspect that is missing from the
O�NET Content Model are quantifications of
the likelihood of fatigue or injury from job
hazards and the degree of injury associated with
their physical or mental workloads. Our task-
analysis approach adapted current occupational
ergonomics and workload models into the
process. Instruments for quantifying PWL and
MWL were selected due to corresponding
O�NET Work Output Factors.

The strain index (SI) is an observational tool
for assessing jobs for risk of work-related
musculoskeletal disorders of the distal upper
extremities (Moore & Garg, 1995). The SI was
selected for evaluating the PWL due to its
similarity with parameters obtainable from the
O�NET database. There are six SI risk factors,
including intensity of exertion (IE), duration of
exertion (DE), efforts per minute (EM), hand/
wrist posture (HWP), speed of work (SW), and
duration of task per day (DD). For each task and
each hand, these risk factors are assessed by as-
signing them to a category. Each of the factors is
rated and their product is classified into three
categories to predict job safety, with “low” (SI ≤
3.0), “medium” (3.0 < SI < 7), and “high” (SI ≥ 7).

The NASA-Task Load Index (NASA-TLX)
is a multi-dimensional scale designed to obtain
workload estimates from one or more operators
while they are performing a task or immediately
afterward (Hart, 2006). It is the most applied
MWL assessment tool and has been widely used
in civil and military aviation, driving, nuclear,
power plant control room operations, and air
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traffic control (Cao et al., 2009; Endsley &
Rodgers, 1997; Hart, 2006). The NASA-TLX
consists of six subscales to measure operator
task performance, including mental demand
(MD), physical demand (PD), temporal demand
(TD), effort (E), performance (P), and frustration
level (FL). Each parameter is rated from very
low to very high and should be obtained from
one or more operators while they are performing
a task or immediately afterward.

Since the SI and NASA-TLX measures were
not directly attainable from O�NET Online,
representative dimensions for each of these
tolerance scales were considered. Parameters
from O�NET corresponding to the SI and
NASA-TLX criteria are provided in Table 1.
These criteria scores were used as PWL and
MWL parameters. These parameters were as-
certained by the O�NET Data Collection Pro-
gram, which provides several hundred ratings,
based on responses from sampled workers to
O�NET questionnaires.

Jobs were arbitrarily selected representing
hand intensive work for a varying range of

automation, where O�NET provided sufficient
data to conduct the analyses. The degree of
automation from O�Net is a scale from 0 to 100
where 0 is “not at all automated” and 100 is
“completely automated.” We selected specific
jobs where the level of automation level was not
high, indicating the potential to benefit from
a robotic assistant. The 16 jobs are shown in
Table 2.

The PWL and MWL scores calculated for
each parameter of the job are listed in Table 3. To
aggregate the variables, we averaged the
O�NET questions for a given index and then
normalized that range of ratings for each pa-
rameter of PWL and MWL. The results are
shown in Table 3. Since parameter ratings from
O�NET range from 0 to 100 and all scores were
normalized to facilitate subsequent calculations
and comparisons. Each SI variable rating was
matched to the corresponding O�Net multiplier
value and the PWL was calculated from the
product of the six multipliers (Moore & Garg,
1995). MWLwas calculated using the sum of six
variables and similarly normalized to a 0 to 20

Figure 1. High-level summary of the process used in our
approach.
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scale for each parameter (Hart, 2006). Since
individual factors in the SI are multiplied, they
were similarly multiplied in our analysis. Sim-
ilarly, since individual factors in the NASA-
TLX are summed, they were summed in our
analysis.

To select work activities to reassign to a co-
bot, the contribution of each work activity for
the total task was calculated. O�NET provides
a description of work activities for each job, and

each job has an associated set of abilities re-
quired to perform it. Since O�NET does not
provide associations between work activities
themselves and abilities, these associations were
generated for the human based on the descrip-
tions provided. These abilities also need to be
matched with the robot description below to
determine whether the robot is good at them.
Then, the PWL and MWL levels for each work
activity were calculated based on the quantified

TABLE 1: SI and NASA-TLX parameters corresponding to O�NET work output factors

Dimension Criteria from O�Net Description of dimension Description in O�NET online

SI
Intensity of

exertion
Static strength An estimate of the strength

required to perform the task
The ability to exert maximum muscle

force to lift, push, pull, or carry objects
Duration of

exertion
Spend time using
hand to handle

The physiological and
biomechanical stresses related to
how long an exertion is
maintained

How much does this job require using
your hands to handle, control, or feel
objects, tools or controls?

Efforts per
minute

Spend time making
repetitive motions

The number of exertions per minute How much does this job require making
repetitive motions?

Hand/wrist
posture

Handling and
moving objects

An estimate of the position of the
hand

Using hands and arms in handling,
installing, positioning, and moving
materials, and manipulating things

Speed of
work

Time pressure An estimate of how fast the worker
is working

How often does this job require the
worker to meet strict deadlines?

Duration per
day

Duration of typical
work week

An estimate of hours of work Number of hours typically worked in
1 week

NASA-TLX
Mental

demand
Attention to detail How mentally demanding was the

task?
Job requires being careful about detail

and thorough in completing work tasks
Physical

demand
Performing general
physical activities

How physically demanding was the
task?

Performing physical activities that require
considerable use of your arms and legs
and moving your whole body, such as
climbing, lifting, balancing, walking,
stooping, and handling of materials

Temporal
demand

Time pressure How hurried or rushed was the pace
of the task?

How often does this job require the
worker to meet strict deadlines?

Effort Achievement/effort How hard did you have to work to
accomplish your level of
performance?

Job requires establishing andmaintaining
personally challenging achievement
goals and exerting effort toward
mastering tasks

Performance Consequence of
error

How successful were you in
accomplishing what you were
asked to do?

How serious would the result usually be if
theworkermade amistake that was not
readily correctable?

Frustration
level

Stress tolerance How insecure, discouraged,
irritated, stressed, and annoyed
were you?

Job requires accepting criticism and
dealing calmly and effectively with high
stress situations
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importance of the work activity for each job and
the required abilities, to assign high levels of
workload tasks to the cobot.

Robot Work Qualification

Human-robot teaming can potentially lever-
age the strength and endurance of robots with the
flexibility and decision-making capabilities of
human operators. Before deciding which work
activities to assign to cobots, it is important to
understand their ability to perform the task. A
decision tree was developed based on reported
robot capabilities (Figure 2). The goal of this
decision tree was to return a singular, binary
choice of whether a robot would be capable of
executing the work activity. This decision would
then be used in the allocation process to filter
tasks that the robot could perform for possible
selection. Because of the generality of some of
the work activities, these judgments were also
made in the general sense for the current anal-
ysis. Our decision process was guided by both
technical feasibility, as demonstrated by state-
of-the-art systems, and the general practices and
capabilities a small to medium-sized enterprise
would be able to implement and/or maintain
such a system. To utilize this decision tree, the
work activity is evaluated by each question in
the tree. Each response leads to either another
question, or aHigh or Low rating, at which point
the decision process concludes. A High rating
means that robot can perform the task, while
a Low rating means that the robot cannot. Details
about the task layout, available systems, and
robot capabilities have a great bearing on the
robot’s capability to perform a work activity.
The current analysis makes these assessments in
the general and abstract sense, but it is also
possible to use this decision tree to generate
a more customized and accurate result in specific
cases where these properties are more clearly
defined.

The first decision in assessing robot abilities
was whether the work activity required a non-
static process. If the process can effectively be
done as a single set of unchanging actions,
a robot could be utilized to perform that activity.
For example, Job 5’s Mix substances or com-
pounds needed for work activities could be done

with a robot that simply mixes a container at the
press of a button. In contrast, Job 4’s Disas-
semble equipment for maintenance or repair
requires the agent to react to the current state of
the activity, and potentially respond to different
states of the equipment. For activities where
a static process can suffice, they are rated High,
while those that cannot be completed in such
a way continue down the tree.

The second decision was whether a feasible
algorithm existed to handle the logic behind the
non-static work activity. Such algorithms may
include problem space search, neural networks,
and machine learning (Andrychowicz et al.,
2020; Thomas et al., 2018) or planning
(Pearce et al., 2018; Schoen et al., 2020). Work
activities for which there is no feasible algorithm
(e.g., Job 6’s Researching Product Safety) are
rated as Low, while work activities that have
such an algorithm (e.g., Job 9’s Monitor
equipment fluid levels) continue down the tree.

The third decision assessed whether sensing
was required to execute the work activity.
Sensing has come a long way, especially in the
realms of computer vision. Numerous methods
are available to handle identifying objects
(Bhargava & Bansal, 2018; Guo et al., 2014;
Myers et al., 2014), but usually these systems
need to be heavily customized and remain
somewhat fragile (Bhargava & Bansal, 2018).
We note however that a wide range of input
types that might need to be sensed, including
vision, sound, or touch. If the process could be
configured in a way to avoid requiring sensing
(e.g., Job 12’s Analyze test or performance data
to assess equipment operation), the work ac-
tivity capability is rated High. In contrast, work
activities that may require some sort of sensing,
such as Job 13’s Inspect food products, must be
further considered.

The final decision considered cases where
sensing was required and assessed whether there
was a way of modeling the relevant sensory
feeds. Kadir et al. (2018) identified a primary
challenge of cobots to be their inability to
modify their behavior to handle variations in the
workspace. The ability to modify their behavior
in this way is dependent on their understanding
of what those variations mean for the state of the
workspace, and how to structure future work.
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TABLE 2: O�NET occupations studied

Job
No

O�NET
Occupation
Code Job Title Description

Degree of
Automation

1 51–2011.00 Aircraft structure, surface,
rigging and systems
assemblers

Assemble, fit, fasten, and install
parts of airplanes, space vehicles,
or missiles, such as tails, wings,
fuselage, bulkheads, stabilizers,
landing gear, rigging and control
equipment, or heating and
ventilating systems

29

2 53–6051.08 Freight and cargo inspectors Inspect the handling, storage, and
stowing of freight and cargoes

29

3 51–6041.00 Shoe and leather workers
and repairers

Construct, decorate, or repair
leather and leather-like
products, such as luggage,
shoes, and saddles

7

4 51–2093.00 Timing device assemblers
and adjusters

Perform precision assembling,
adjusting, or calibrating, within
narrow tolerances, of timing
devices such as digital clocks or
timing devices with electrical or
electronic components

23

5 47–3011.00 Helpers—brickmasons,
blockmasons,
stonemasons, and tile and
marble setters

Help brickmasons, blockmasons,
stonemasons, or tile and marble
setters by performing duties
requiring less skill. Duties include
using, supplying or holding
materials or tools, and cleaning
work area and equipment

26

6 17–2111.03 Product safety engineers Develop and conduct tests to
evaluate product safety levels
and recommend measures to
reduce or eliminate hazards

25

7 51–9071.06 Gem and diamond workers Fabricate, finish, or evaluate the
quality of gems and diamonds
used in jewelry or industrial tools

39

8 51–4071.00 Foundry mold and
coremakers

Make or form wax or sand cores or
molds used in the production of
metal castings in foundries

47

9 51–8091.00 Chemical plant and system
operators

Control or operate entire chemical
processes or system of machines

66

(Continued)

HUMAN ROBOT COLLABORATION 7



TABLE 2: (Continued)

Job
No

O�NET
Occupation
Code Job Title Description

Degree of
Automation

10 51–2021.00 Coil winders, tapers, and
finishers

Wind wire coils used in electrical
components, such as resistors
and transformers, and in
electrical equipment and
instruments, such as field cores,
bobbins, armature cores,
electrical motors, generators,
and control equipment

16

11 51–9192.00 Cleaning, washing, and
metal pickling equipment
operators and tenders

Operate or tend machines to wash
or clean products, such as barrels
or kegs, glass items, tin plate,
food, pulp, coal, plastic, or
rubber, to remove impurities

36

12 49–2091.00 Avionics technicians Install, inspect, test, adjust, or
repair avionics equipment, such
as radar, radio, navigation, and
missile control systems in aircraft
or space vehicles

19

13 51–3022.00 Meat, poultry, and fish
cutters and trimmers

Use hand or hand tools to perform
routine cutting and trimming of
meat, poultry, and seafood

47

14 51–6011.00 Laundry and dry-cleaning
workers

Operate or tend washing or dry-
cleaning machines to wash or
dry-clean industrial or household
articles, such as cloth garments,
suede, leather, furs, blankets,
draperies, linens, rugs, and
carpets. Includes spotters and
dyers of these articles

57

15 51–9111.00 Packaging and filling
machine operators and
tenders

Operate or tend machines to
prepare industrial or consumer
products for storage or
shipment. Includes cannery
workers who pack food products

39

16 51–9199.01 Recycling and reclamation
workers

Prepare and sort materials or
products for recycling. Identify
and remove hazardous
substances. Dismantle
components of products such as
appliances

27

Note. All data are from O�NET database. All jobs in the following will be replaced by serial numbers.
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There are some existing solutions that attempt to
solve parts of this problem. For instance, deep
learning for fault detection (Iqbal et al., 2019),
human safety responsive control strategies
(Michalos et al., 2015), computer vision for PCB
inspection (Mar et al., 2011), or language and
conversation systems (Leite et al., 2016; Robb
et al., 2019) have been considered. Computer
vision applications, when feasible, have shown
efficacy. For instance, CoSTAR (Paxton et al.,
2017) allows engineers to construct manufactur-
ing tasks that rely on object recognition. For other
sensory inputs (e.g., voice), the current successes
with modeling still trail human levels of com-
prehension. For work activities with well-
modeled sensory feeds such that they can rea-
son sufficiently about the environment, (e.g., Job
2’s Measure product or material dimensions),
they are rated High. If such modeling is not
currently possible, or is impractical (e.g., Job 16’s
Repair production equipment or tools), they are
rated Low.

It is important to note that while some jobs
contain similar or identical work activities as
others, each work activity might end up with
a different rating, depending on the assump-
tions associated with the job. For example, Job
7 has the work activity Operate Grinding
Equipment, much like Job 16. This work ac-
tivity is rated differently between the two, since
in the context of the first, the grinding is likely
done on a small stone or custom art piece,
which is also likely the end product. Since there
is a large amount of variability in the grinding
targets, the sensory environment is poorly
modeled. In contrast, the grinding in Job 16 is
likely for destructive purposes, and could be
done with a much simpler process, for which,
a limited understanding of this sensory

environment would be possible. Thus, Job 7’s
version of this work activity table is rated Low,
while Job 16’s is rated High. A final decision
for each Job’s work activities is included in
Table 5.

Optimization Approach

Our method ranks the importance and
workload contribution of work activity scores
obtained from O�NET. The job sets and pa-
rameters are outlined in Table 4.

The following assumptions are introduced for
an optimal assignment policy:

For each activity xi 2W , i ¼ 1,:::,N, the
Tolerance is defined as the weighted sum of
PWL andMWL, and Tolerance index belongs to
either a high or a low workload category, de-
noted as WH and WL, respectively, based on
a threshold β, that is,

xi 2WH if TIi ≥ β otherwise xi 2WL.
For an activity xi 2R, i ¼ 1,:::,N, the robot

compatibility can be grouped into two catego-
ries: high and low, denoted as RH and RL ac-
cording to the robot work activity decision tree
(Figure 2), such that only work activities with
High ratings are considered highly compatible.

No strain index exists for robots, that is,
TIi ¼ 0 if xi 2R,.

Due to the orders of magnitude difference
between PWL andMWL, a coefficient is needed
to convert the weights between PWL and MWL.
Hence, α represents the proportion of PWL in
overall job tolerances. In contrast, 1-α, which
presents the proportion of MWL in the overall
job tolerances.

The total number of activities that the robot
can be assigned in the process is limited by K,
where K ≤N .

Figure 2. Decision tree for evaluating robot ability to perform a work activity. This tree considers an
individual work activity from the O�NET database as input and returns either a high (robot can perform
the activity) or low (robot cannot perform the activity) decision rating.

10 nn n - Human Factors



Consider the following objective: The total
tolerance index of a job is defined

TI ¼
XN
i¼1

TIið1� rÞi

Where ri is the replacement sign for activity xi,

which is defined as ri ¼
(
1 if xi 2R
0 if xi 2W

.

It is preferred that the cobot with high
compatibility can replace human operations with
a high tolerance score. In other words, the search
space can be reduced by limiting activities
xi 2fWH \ RHg. Thus, R4fWH \ RHg. In ad-
dition, not all activities in such a group can be
replaced since the total number of replaced
activities is constrained by K. Then, the opti-
mization objective is to select activities that can
be replaced by robots so that the overall strain
index of the whole process will be minimized.

min
XN
i¼1

ð1� riÞðαPWLi þ ð1� αÞMWLiÞ

s:t:
XN
i¼1

ri ≤K

xi ¼ f0; 1g

xi 2
(

R if ri ¼ 1
W if ri ¼ 0

xi 2
(
WH if TIi ≥ β
WL if TIi < β

xi 2fWH\RHg

Quantitative Results

In this section, we apply our approach to the
selected jobs from the O�NET database and ex-
plore changes in PWL and MWL when different
work activities are reassigned to cobots. The
contribution and importance of each work activity
were calculated in addition to the PWL and MWL
for each work activity as shown in Table 5. The
maximum number of work activities that were
reassigned per job was no more than two activities
since the algorithm converges beyond two

assignments. Residual human capacity of the
human worker after cobot task assignment was
used to perform the activity that was ranked
greatest in importance in O�NETamong the work
activities in a job to increase productivity.
Therefore, the PWL andMWL for additional work
activities changed accordingly while the PWL and
MWL for the remaining work activities remained
the same. Correspondingly, the new PWL and
MWL for the whole job were calculated.

The PWL and MWL changes for each job
before and after optimally assigning tasks to the
cobot and human worker are shown in Figure 3.
Similar trends were observed for Jobs 2, 3, 5, 9,
and 14, indicating that PWL andMWLdecreased
after optimization. Conversely, PWL and MWL
increased post-optimization for Jobs 1, 4, 6, 7, 10,
11, 12, 13, and 15. It is worth noting that the PWL
and MWL remained the same pre- and post-
optimization for Jobs 8 and 16.

DISCUSSION

Jobs That Benefit From a Cobot Assistant

Some jobs showed both reductions in PWL
and MWL after assigning work activities to the
cobot. The remaining work activities were re-
distributed to the human worker according to
their order of importance, as quantified in the
O�NET database. If these work activities were
of high importance but imposed little demand on
workload, the human worker benefited. On the
contrary, if jobs where work activities were of
high importance but imposed greater demands,
the human worker had greater workload.

Considering the work scenario, if work ac-
tivities within a job cannot be completed in
parallel by robots and humans working together,
it is uncertain whether the work will benefit from
collaboration. Although PWL andMWLmay be
improved when the human worker is idle, it does
not necessarily improve productivity. If more
work activities can be performed in parallel, the
human worker will have residual capacity to
perform other work activities. When the reassign-
ment of work activities was of high importance, but
the workload requirements were low, reassignment
often resulted in improved workload while in-
creasing productivity. Cobots excel either formostly

HUMAN ROBOT COLLABORATION 11



physical or mostly mental tasks. Therefore, if the
cobot was capable of performing major work ac-
tivities that had high levels of PWL and MWL and
the human worker was reassigned to these work
activities after the cobot has completed them, the
optimizer would have more options to assign work
activities to the human worker and may find sol-
utions that are more desirable.

Consider Job 14 (Laundry and Dry-Cleaning
Workers) where the robot was allocated work
activities 2 (Operate garment treatment equip-
ment) and 7 (Lubricate production equipment),

and the extended human work activity was 3
(Sew clothing or other articles). This allocation
is reasonable given that both robot activities are
ones that could be programmed with either static
programs or dynamic ones with minimal sens-
ing. In comparison, the extended human work
activity is one that requires careful custom work
that is likely impossible to create general pro-
grams for a cobot. Furthermore, it is likely that if
given additional time, this allocation would
result in improved performance. A similar pat-
tern occurred for other jobs, such as Job 2

TABLE 4: Job sets and parameters specified for the optimization approach

Formulation Description

Sets
J a set of jobs to be scheduled
A a set of work activities composing each job
W a set of workers (human or robotic) who will be assigned work activities
I a set of work activity importance scores from O�NET online
D a set of descriptor importance from O�NET online
P a set of physical parameter scores from O�NET online
M a set of mental parameter scores from O�NET online
N a set of number of work activities

Parameters
IJ,A Values for the work activity importance scores I of work activity A in job J
DJ,A Values for descriptor importance D of work activity A in job JPN
1

Values for the sum of a value from work activity 1 to work activity N

∏6
1 Values for the product of the six physical parameters from O�NET onlineP6

1
Values for the sum of the six mental parameters from O�NET online

P ¼ fIE,DE,EM,HWP,SW ,DDg a set of physical parameter scores P from O�NET online (there are six
parameters, IE, DE, EM, HWP, SW, and DD, respectively)

M ¼ fMD,PD,TD,E,F,FLg a set of mental parameter scoresM getting fromO�NET online (there are
six parameters, MD, PS, TD, E, F, FL, respectively)

Tolerances
PWL ¼ ∏6

i¼1 Pi a measure of the physical workload of a job

MWL ¼ P6
i¼1

Mi a measure of the mental workload of a job

= IJ,A ×DJ,APN

1
IJ,A ×DJ,A

Normalized contribution is the contribution ratio of each work activity to
the whole job

PWLi ¼ ∏6
i¼1 Pi ×

IJ,A ×DJ,APN

1
IJ,A ×DJ,A

PWLi for work activity xi (needed tomeasure the PWL of each work activity
in a job)

MWLi ¼
P6
1

Mi ×
IJ,A ×DJ,APN

1
IJ,A ×DJ,A

MWLi for work activity xi (needed to measure the MWL of each work
activity in a job)

TIi ¼ αPWLi þ ð1� αÞMWLi Tolerance index TIi for activity xi (α is the weight coefficient between
physical and mental workload)

12 nn n - Human Factors
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(Freight and Cargo Inspectors), Job 3 (Shoe and
Leather Workers and Repairers), and Job 16
(Recycling and Reclamation Workers).

In general, physical work activities that were
of high importance benefited most from a cobot
assistant. Cobots are good at exerting static

strength for repetitive, prolonged, or continuous
tasks, and they are better suited to work with
a high level of physical workload. By contrast,
humans are better at mental abilities rather than
physical abilities, such as problem sensing,
quality control analysis, and problem-solving. If

Figure 3. The PWL and MWL for each job before and after optimization. The squares ■
represent PWL and MWL for the original job and the circles • represent PWL and MWL for the
optimized job. When there is only one black square, the original and optimized values are co-
incident.WA is the serial number ofwork activities that are replaced during the optimization process
in each job. RA is the serial number of work activity that is reassigned to the human in each job.
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a work activity required greater physical capa-
bilities, the more likely it was assigned to
a cobot. At the same time, if the work activity
was also among the most important of all work
activities, then the work activity might be as-
signed to the robot to benefit the whole job, as
cobots are better suited to perform physical
activities for long periods of time.

Jobs That do not Benefit From
a Cobot Assistant

We have also identified scenarios that yielded
undesirable outcomes when a robotic assistant
was introduced. After assigning some work
activities that meet the requirements for a cobot,
the human worker was left with idle capacity
that could be filled with additional work. In our
algorithm, we assumed that capacity would be
filled with the most important activity that the
robot is incapable of performing, presumably to
increase the overall output. If the activity that
was selected was particularly demanding, it can
have negative effects on PWL or MWL, de-
pending on the work activity’s abilities.

An example of this situation can be seen in
Job 4 (Timing Device Assemblers and Adjust-
ers). The robot was assigned work activities 2
(Reshape small metal components for precision
assembly) and 4 (Apply lubricants or coolants to
workpieces), while work activity 1 (Disassem-
ble equipment for maintenance or repair) for the
human workers was extended. While having
a robot assisting likely reduced some workload
for the human, the human’s reassignment of the
highly important work activity 1, which requires
a great deal of dexterity and arm-hand steadi-
ness, can be physically demanding when re-
peated for extended periods of time. This
resulted in an overall increased workload, de-
spite the assistance of the robot. Other Jobs 7
(Gem and Diamond Workers) and 12 (Avionics
Technicians) presented a similar allocation
pattern. Alternatively, the robot’s assistance
sometimes failed to offset the cost of the addi-
tional human workload in cases where the ex-
tended work activity was relatively trivial, but
nevertheless straining when repeated. This type
of pattern was seen in Jobs 1 (Aircraft Structure,
Surfaces, Rigging, and Systems Assemblers), 13

(Meat, Poultry, and Fish Cutters and Trimmers),
and 15 (Packaging and Filling Machine Oper-
ators and Tenders).

There is no doubt that cobots promise many
benefits, including low-cost automation and
flexibility in small-batch production. However,
these results indicated that according to the order
of importance of residual work activities, when
work activities redistributed to humans had less
ability requirements and higher workload, it led to
an increase in the overall workload. When cobots
are introduced to help improve productivity, it
therefore is also necessary to consider the effect of
the assignment of human surplus capacity.

PWL versus MWL

For several cases in this study, we saw that the
tolerances before and after optimization had
different outcomes. There were some cases where
the PWL increased and the MWL decreased after
optimization, or vice versa. The tolerances of
overall work presented variations when PWL and
MWL were weighted differently. When that
happens, it is important that the weights for PLW
and MWL are considered in a manner that allows
for minimal tolerances. Although PWLwasmuch
greater than MWL in some cases due to the
calculation methods of PWL and MWL, the
degree of change before and after optimization
should be compared in practice.

Work activities that required different abili-
ties had PWL and MWL scores that varied.
Specifically, the tolerances for pre- and post-
optimization remained unchanged when the
ability and workload required by the redis-
tributed work activities coincided with the
original work activity, and tolerances persisted
regardless of the weight of PWL and MWL. In
this case, while the cobot improved productivity,
the workload remained unchanged before and
after optimization. The variable TI combines
a weighted value of PWL and MWL to obtain the
total tolerance value. Although this summation is
a theoretical construct, there is precedence for
considering their combination. Young et al. (2015)
conclude that the interaction between MWL and
PWL are interdependent in the quantification of
workload limits that specify when workers are
approaching or exceeding their performance
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tolerances. Marras and Hancock (2014) contend
that the mind and body cannot be separated in
ergonomics. PWL is in fact a component of MWL
in the NASA-TLX. Basahel and Ajovalasit (2010)
found that light physical activity could compen-
sate for the performance decrements imposed by
mental underload.

Limitations and Future Directions

Although we used parameters from O�NET
online to approximate PWL and MWL, the
parameters were not direct measures, which
means they are similar, but not identical. It is
likely that for a specific application, actual
measures of PWL and MWL from that context
need to be collected. Future research will apply
the SI and NASA-TLX to actual jobs. The strain
index was selected as a multi-factor quantitative
prototypical measure of physical workload for
the distal upper limb because it has been widely
used and studied for validity (Spielholz, et al.,
2008). Given the theoretical nature of the current
study, it is not possible to include individual
differences or other complementary factors.
Similarly, the NASA-TLX was selected because
of its widespread usage and the correspondence
between O�NET on-line variables and these
measures of PWL and MWL. Although we used
parameters from O�Net online to approximate
PWL and MWL, these parameters were not
direct measures, which means they are similar,
but not identical. We anticipate that future ap-
plications of this work will require actual
measures of PWL and MWL by the employing
the SI and NASA-TLX instruments to actual
industrial tasks.

As with the SI and NASA-TLX, resulting
quantities under completely different conditions
and factors can be equivalent. In the algorithm,
for each activity in a job, we calculated the PWL
and MWL, and the activities with the highest
workload and meeting the conditions for the
assignment of the cobots were assigned to the
cobots. Hence, whether the different conditions
had the same result or not, in the algorithm,
the activities which meet the conditions for the
assignment were assigned to the cobot. The
selection of the 16 jobs were not random, but
the outcome of the analysis is significant by the

knowledge of the possibility that PWL or MWL
can change either way with the introduction of
robotic assistants for performing specific tasks.
This approach does not account for actual cobots
performing actual tasks. The cobot’s capability
rating for each work activity is the result of
careful literature review and expert questioning,
but in reality, cobot capabilities are highly de-
pendent on the specifics of the work environ-
ment and task requirements While job context
was taken into account when assessing work
activities, considerable variation is likely across
instances of the same job. Moreover, product
variation may lead to changes in the require-
ments not captured in a general work activity
description. Therefore, the applicability of our
general approach is uncertain for specific job
contexts without that information, but it is possible
to reassess the robot’s capability—as well as hu-
man PWL and MWL measures—in these specific
contexts and redo the allocation with our method,
thus producing more accurate and customized
assessments when more of this information of the
jobs is known. We also do not consider any costs
for using the cobot in the optimization objective
function. Cost factors, such as wear and tear,
energy consumption, worker training, and im-
plementation difficulty would be important to
consider for future research. These hypothetical
conditions that could provide physical or mental
loads do not necessarily mean that when a task that
is allocated to the robot because of an unsuitable
tolerance value, may actually be hazardous to the
health of the operator.

The potentially complex relationships be-
tween work activities were not taken into ac-
count. We assumed that each work activity was
independent and can be operated in parallel, but
in practice, we need to consider cases where
there are temporal or spatial interactions be-
tween work activities, or when single work
activities could be themselves collaborative
processes. In addition, we did not consider sit-
uations where changing the workspace or work
cell to allow human and robot collaboration
could have downstream effects on the workload.
These downstream effects could be across re-
lated jobs in the same workspace and impact
subsequent workspace and activities in a pro-
duction line. Given the higher productivity of
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the optimized job, other jobs dependent on the
output from the job in question could be im-
pacted negatively if trying to adjust to that
change in productivity. This could be addressed
by considering the entire ecosystem of jobs in
a given site and considering how the outputs of
one may affect the others.

The variable K (the number of jobs the robot
could be assigned) was limited to two in this
study in order to reduce the number of variables
and enable comparisons across jobs. Due to
the convergence of diminishing results trend
given our residual calculation and the specific
abilities available, even if the K values se-
lected are different, the variation trend of PWL
and MWL scores is similar. Therefore, a rep-
resentative case of K=2 is selected for dis-
cussion. In a job where work activities are
chained together, thereby requiring prior ex-
ecution of other work activities, choosing
a low K may minimize agent handovers or
context switches. In other cases, the choice of
K may have to be adjusted to a higher value to
fully leverage the cobot, such as when work
activities can be performed in parallel. A more
extensive consideration of K could be in-
vestigated in the future.

CONCLUSIONS

In this paper, we demonstrate an approach
using the O�NET Online database to consider
productivity and human tolerances simulta-
neously for integrating a collaborative robot into
a manufacturing process. We present a variation
of the tolerances as a measure of the sum of
physical and mental workload of each work
activity in a job and use its value to evaluate the
change of workload pre- and post-optimization.
We discuss trade-offs on whether humans use
redundant abilities to work with cobots after
assigning some work activities to the cobot. The
evidence from this study suggests that pro-
ductivity and the changes in human tolerances
should be considered when involving cobots.
Larger studies with longer follow-up are needed
to be the next step that identifies the relationship
between productivity and worker tolerances in
real-world factory work, which presents col-
laborative simulation using cobots.
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